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Dynamics in colloidal liquids near a crossing of glass- and gel-transition lines

M. Sperl
Physik Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 19 August 2003; published 15 January 2004!

Within the mode-coupling theory for ideal glass transitions, the mean-squared displacement and the corre-
lation function for density fluctuations are evaluated for a colloidal liquid of particles interacting with a
square-well potential for states near the crossing of the line for transitions to a gel with the line for transitions
to a glass. It is demonstrated how the dynamics is ruled by the interplay of the mechanisms of arrest due to
hard-core repulsion and due to attraction-induced bond formation as well as by a nearby higher-order glass-
transition singularity. Application of the universal relaxation laws for the slow dynamics near glass-transition
singularities explains the qualitative features of the calculated time dependence of the mean-squared displace-
ment, which are in accord with the findings obtained in molecular-dynamics simulation studies by Zaccarelli
et al. @Phys. Rev. E66, 041402~2002!#. Correlation functions found by photon-correlation spectroscopy in a
micellar system by Mallamaceet al. @Phys. Rev. Lett.84, 5431 ~2000!# can be interpreted qualitatively as a
crossover from gel to glass dynamics.

DOI: 10.1103/PhysRevE.69.011401 PACS number~s!: 82.70.Dd, 61.20.Lc, 64.70.Pf
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I. INTRODUCTION

The mode-coupling theory for ideal glass transitio
~MCT! is based on closed equations of motion for the cor
lation functions of the density fluctuationsrqW of wave vector

qW , fq(t)5^rqW
* (t)rqW&/^urqW u&, q5uqW u @1,2#. The static struc-

ture factorSq enters these equations as input; it is assume
be a smooth function of the control parameters like densitr
or temperatureT. The equations of motion exhibit bifurca
tions for the long-time limit of the correlators,f q
5 lim

t→`
fq(t), which are referred to as glass-transition s

gularities. Only bifurcations of the cuspoid family can occ
in the MCT equations@2,3#, i.e., singularities of the classAl ,
l>2, which are equivalent to the bifurcations in the re
roots of real polynomials of orderl @4#. The generic singu-
larity when changing a single control parameter is theA2,
also called fold. In the most important situations, it de
with the transition from a liquid, characterized byf q50, to
an idealized glass, characterized byf q.0. The quantityf q is
the Debye-Waller factor for the arrested amorphous str
ture. For parameters near a glass-transition singularity, s
dynamics emerges with subtle dependence on time and
trol parameters. This dynamics is proposed by MCT as
explanation for the structural relaxation in glass-forming l
uids. The universal laws for this dynamics can be obtain
by asymptotic expansion of the equations of motion as w
demonstrated comprehensively for the hard-sphere sys
~HSS! @5,6#. The glass transition for the HSS has been st
ied experimentally by dynamic light scattering for sterica
stabilized hard-sphere colloids@7–9#. The successful analy
sis of the data within the MCT frame provides strong supp
for the theory@10#.

It is known from studies of so-called schematic mod
that there may emerge also higher-order singularities fr
MCT such asA3 andA4 @11#. The most significant feature o
the dynamics near anAl with l>3 are logarithmic decay
laws, where detailed properties have also been worked o
full generality@12#. There are a variety of data indicating th
1063-651X/2004/69~1!/011401~13!/$22.50 69 0114
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logarithmic decay laws occur in some glass-forming liqu
@13–18#. Generically, one has to vary two or three contr
parameters, respectively, in order to approach these hig
order singularities. It was discovered only recently that
MCT equations for simple systems imply the existence of
A3 singularity if a hard-sphere repulsion is complemented
a short-ranged attraction shell@19,20#. The A3 is the end
point of a line ofA2 singularities describing glass-to-glas
transitions in the parameter plane spanned by the pac
fractionw and the effective attraction strengthG. At this line
there occurs a transition from a glass caused by the c
effect due to the strong repulsion to a glass caused by b
formation due to the dominant role played by the attracti
This transition line extends to low packing fraction and
was argued to be related to the gel transition there@20#.
Therefore, this line shall be referred to asgel line in the
following for the sake of brevity. There is a second transiti
line that extends to the known transition of the HSS ifG
tends to zero. For brevity, this line shall be referred to
glass line in the following. The glass line terminates tran
versally at the gel line forming a line crossing in the glas
transition diagram. The liquid dynamics close to this cro
ing shall be studied in this paper.

The existence of a crossing point depends on the att
tion to be sufficiently short ranged. If the ranged of the
attractive potential increases above a critical value, the gl
glass transition line and theA3 singularity vanish. This hap-
pens in anA4 singularity as was demonstrated first for th
simple system of particles interacting via a square-well
tential @21#. The topological singularitiesAl are robust
against parameter variation. It was shown explicitly for
variety of cases that various interaction potentials or appro
mation schemes for the static structure factor yield the sa
qualitative results@21–24#. In this paper, the square-well sys
tem ~SWS! shall be used as model for the quantitative wo
Systems with short-ranged attraction can be realized
colloid-polymer mixtures, where the polymer induces
depletion attraction@25#. Such systems are well under co
trol experimentally and have established thermodyna
©2004 The American Physical Society01-1
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phase behavior@26#. Logically disconnected from the ap
pearance of higher-order singularities, MCT predicts a su
reentry phenomenon for the glass transitions in such syst
@19# which can be related to the variation of the static str
ture factor@21#. Starting in the glassy state of the HSS a
increasing the attraction, the glass is melted for a sufficie
small range of the attraction. Upon further increasing
attraction, the system arrests again. This reentry phenom
is now firmly established by experiments in colloidal sy
tems@27,28# and by molecular-dynamics simulation@15,28–
30#.

The scenario suggested by MCT for theA2 singularity has
been applied successfully to analyze experiments and re
of computer simulations@31#. It was also applied to system
where both glass and gel transitions occur@14,15,30#. For the
dynamics near higher-order singularities, detailed predicti
for logarithmic decay and subdiffusive power law in th
mean-squared displacement~MSD! have been worked ou
for the SWS@32#. Indications of logarithmic decay were re
ported@14# which are compatible with MCT predictions, an
a recent study identifies both logarithmic decay in the co
lation functions and a subdiffusive power law in the MS
which is consistent with MCT@16#. It is the main objective
of the present paper to discuss scenarios in the SWS ne
crossing point where the dynamics is influenced by differ
A2 singularities and higher-order singularities at once. Th
are signs of crossing phenomena connected to higher-o
singularities in recent experiments with photon correlat
spectroscopy in a micellar system@13,17,18#, a suspension o
poly~methylmethacrylate! ~PMMA! colloidal particles
@28,33#, a system of microgel colloids@27,34#, and computer
simulation studies@15,28#. For polymers, dielectric measure
ments could be fitted with scenarios forA3 , A4 and a line
crossing@35–39#.

The paper proceeds as follows. Section II introduces
equations of motion of MCT. A comparison of the theoretic
glass-transition diagram with the simulation of Ref.@15# in
Sec. III motivates the asymptotic analysis which is outlin
in Sec. IV and applied to the MSD in Sec. V and to t
correlation function in Sec. VI. Section VII presents a co
clusion. The Appendix addresses specific questions arisin
the numerical determination of the glass-transition singul
ties.

II. EQUATIONS OF MOTION

All equations of MCT are based on the equations of m
tion for the normalized density correlatorsfq(t)
5^rqW

* (t)rqW&/^urqW u2& for wave vectorqW and its modulusq

5uqW u. When Brownian dynamics for the motion in colloid
is assumed, these equations read@1,2,5,40,41#

tq] tfq~ t !1fq~ t !1E
0

t

mq~ t2t8!] t8fq~ t8!dt850. ~1a!

Here,tq5Sq /(D0q2), with D0 denoting the short-time dif-
fusion coefficient.Sq5^urqW u2& is the static structure factor o
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the system. The initial condition isfq(0)51. The kernel is
a bilinear functional of the correlators, mq(t)
5Fq@V,fk(t)#, with

Fq@ f̃ #5
1

2E d3k

~2p!3
VqW ,kW f̃ k f̃ uqW 2kW u , ~1b!

and the vertexV specified by

VqW ,kW5SqSkSuqW 2kW ur@qW •kWck1qW •~qW 2kW !cuqW 2kW u#
2/q4. ~1c!

The direct correlation functioncq is connected withSq by
the Ornstein-Zernike relation,Sq51/@12rcq# @42#.

The long-time limit of the correlation function,f q
5 lim

t→`
fq(t), can be calculated from an algebraic equ

tion,

f q /~12 f q!5Fq@ f #, ~2!

which displays glass-transition singularities when control
rameters are varied@2#.

For the dynamics of the tagged particle density,rq
s(t)

5exp@iqW•rWs(t)#, one obtains similar equations for the correl
tion functionfq

s(t)5^rqW
s* (t)rqW

s
& @1,6#,

tq
s] tfq

s~ t !1fq
s~ t !1E

0

t

mq
s~ t2t8!] t8fq

s~ t8!dt850. ~3a!

Here rWs(t) denotes the tagged particle position,tq
s

51/(D0
sq2) with the short-time diffusion coefficient for a

single particle, denoted byD0
s . We setD0

s5D0 in the fol-
lowing. The kernelmq

s(t)5F q
s@f(t),fs(t)# is given by the

mode-coupling functional for the tagged particle motion,

F q
s@ f̃ , f̃ s#5E d3k

~2p!3
Sk

r

q4
ck

s2~qW kW !2 f̃ k f̃ uqW 2kW u
s . ~3b!

For a tagged particle of the same sort as the constituen
the host fluid we can setcq

s5cq .

The MSD of a tagged particle,dr 2(t)5^urWs(t)
2rWs(0)u2&, obeys@6#

dr 2~ t !1D0
sE

0

t

m(0)~ t2t8!dr 2~ t8!dt856D0
st. ~4a!

The functional m(0)(t)5 lim
q→0

mq
s(t)5FMSD@f(t),fs(t)#

for the MSD reads

FMSD@ f̃ , f̃ s#5E dk

~6p2!
rSk~ck

s!2 f̃ k f̃ k
s . ~4b!

The inverse of this functional determines a characteristic
calization lengthr s by r s

251/FMSD@ f , f s#. The long-time dif-
fusion coefficient Ds can be defined by lim

t→`
dr 2(t)/t

56Ds and yields@6#

D0
s

Ds
511D0

sE
0

`

m(0)~ t !dt. ~5!
1-2
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DYNAMICS IN COLLOIDAL LIQUIDS NEAR A . . . PHYSICAL REVIEW E 69, 011401 ~2004!
For the equations above, the static structure factorSq is
required as input, which can be calculated from the inter
tion potential after some closure relation is invoked@42#. For
SWS, we use an approximate analytical solution of
mean-spherical approximation~MSA! and a numerical solu
tion to the Percus-Yevick approximation~PYA! @21#. The
SWS consists ofN particles in a volumeV at densityr
5N/V with hard-core diameterd and an attractive well of
depthu0 and widthD. We describe the SWS by three dime
sionless control parameters: the packing fractionw
5d3rp/6, the attraction strengthG5u0 /(kBT), and the
relative well widthd5D/d. The unit of length is chosen to
be d51. The unit of time is chosen so thatD051/160.
Wave-vector space shall be discretized toM grid points with
spacingDq50.4 and a cutoffqmax large enough to asse
convergence of the integral in Eq.~1b! for the long-time
limit. The procedures for the numerical solution of Eqs.~1!
to ~5! have been outlined previously@32,43,44#. Asymptotic
laws close to the singularities are presented in the Appen
which allow for accurate and fast determination of bothA3
end points and glass-glass transition points.

III. GLASS-TRANSITION DIAGRAMS

The three-dimensional control-parameter space for
SWS can be examined by considering cuts through the s
glass-transition singularities for constantd. In each plane the
transition points are calculated by finding the bifurcati
points of Eq.~2!. Figure 1 displays the singularities for se
eral cuts. The glass-transition diagram is organized aro
the A4 singularity (* in Fig. 1! at (w* ,G* ,d* )MSA

5(0.5277,4.476,0.043 81). From there emerge ford,d*
both the line ofA3 end points, (s in Fig. 1! @w°(d),G°(d)#,
and the line crossings (L in Fig. 1! @wL(d),GL(d)#, sepa-

FIG. 1. Glass-transition diagram for the SWS using the struc
factor within MSA. Five cuts through the three-dimensional d
gram are shown for constant well widthsd as curves for attraction
strengthG vs packing fractionw. All curves start at the limit of the
HSS forG50 as indicated by the arrow. Ford50.117 and 0.06 the
curves wc(G) vary smoothly asG is increased. The lined5d*
50.043 81 hits theA4 singularity(*). Curves ford,d* exhibit a
crossing point (L) and anA3 end point singularity (s) as dem-
onstrated for d50.03 and d50.02, where part of the glass
transition line has been erased to avoid cluttering the figure.
01140
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rating glass transitions forG,GL from gel transitions for
G>GL. The line of gel transitions extends beyond the cro
ing point into the arrested state as glass-glass-transition
and terminates at theA3 singularity. Ford.d* , glass- and
gel-transition lines join smoothly as seen ford50.06 and
0.117. Ford,d reentrythe lines of glass transitions display th
reentry phenomenon discussed above. Atd5d reentry this re-
entry disappears@24#. When using the analytical result forSq

in MSA we getd reentry
MSA 50.117, while for the PYA one finds

the larger valued reentry
PYA 50.145. To assure that the small

value for the MSA is not caused by the expansion ind used
for the calculation ofSq , we determined reentry again, this
time solving the MSA numerically. This yieldsd reentry

MSA

50.112. Therefore the deviation between the MSA and P
results has to be understood as a difference in the way
closure relations incorporate the subtle changes inSq that
lead to the reentry as explained earlier@21#.

For the discussion of the crossing we choose the cud
50.03 from Fig. 1 which is shown in Fig. 2 as full line. Th
ratio of the diffusivityDs compared to the short-time diffu
sion coefficientD0

s can be used to characterize the distan
of a chosen state to the liquid-glass-transition line. T
dashed lines in Fig. 2 show states for constantD0

s/Ds with
Ds defined in Eq.~5!. These lines are plotted for the cutd
50.03 also using the MSA for the evaluation of the structu
factor. These isodiffusivity lines can be interpreted as
proximations of the liquid-glass-transition line. They al
display the reentry phenomenon as discussed above.
liquid-glass-transition line follows closely the isodiffusivit
curves but is separated further from them around the cros
point. This indicates the influence of more than one singu
ity on the dynamics in that region. If the PYA instead of th
MSA is used to calculate the structure factor input, the dot
lines of liquid-glass- and glass-glass-transition curves

e
-

FIG. 2. Glass-transition diagram for the SWS atd50.03 ~full
lines! together with isodiffusivity lines forD0

s/Ds5105,107,1010

~dashed lines, from left to right! based on the structure factor usin
MSA. TheA3 singularity is indicated by a circle (s) and a crossing
point by a diamond (L). On the isodiffusivity lines, states ar
marked forG51.67 (1), 5.50(d), and 6.33(j). The dotted lines
with the shaded circle as end point show the glass-transition sin
larities ford50.03 based on the structure factor using PYA resca
in G by a factor 5.88 to match the crossing point.
1-3
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M. SPERL PHYSICAL REVIEW E 69, 011401 ~2004!
found. The result for both closure relations can be matc
reasonably at the crossing point by only rescalingG by a
factor of 5.88. The agreement for the almost horizontal g
transition lines is less satisfactory but the glass-transi
lines almost fall on top of each other. As noted in the p
ceding paragraph, the reentry is more pronounced for
result using the PYA than for the MSA. The different packi
fractions at the crossing arewMSA

L 50.5364 and wPYA
L

50.5362, while the difference in the location of theA3 sin-
gularities is slightly larger, wMSA

s 50.5449 and wPYA
s

50.5456.
Figure 3 shows theA3 singularities and the crossin

points when usingSq in PYA ~empty symbols!. Matching the
crossing points from the result using the MSA, cf. Fig.
again by multiplications inG, yields good agreement inwL

for all values ofd. After the transformation, theA3 singu-
larities for a givend differ in G by 5% and less, while the
deviations inw are comparable to those found for the cro
ings. It should be noted that all end points are found
roughly the same attraction strength,G'0.9, whereas the
crossing points move to higherG as the well width is de-
creased. At theA4 singularity, the end point absorbs th
crossing point, and the differencew* 2wL approaches zero
in a minimum. Therefore, crossing point and end point se
rate from each other quadratically when close to theA4 sin-
gularity. This is demonstrated in the inset of Fig. 3 for t
results using both MSA and PYA as input, respectively.

One cannot expect a theory for a singularity to pred
accurate numbers for the control parameters of the singu
ties. For that reason the distance from the singularity sho
be used for a comparison of the theoretical results with d
from experiments or computer simulation. The isodiffusiv
curves in Fig. 2 motivate a comparison between MCT a
computer simulation based on the ratioD0

s/Ds @15#. Figure 4
shows that an acceptable fit of data for the diffusivity in R

FIG. 3. End points (s) and crossing points (L) for the SWS in
PYA for d5d* , 0.04, 0.035, 0.03, 0.025. The crossing poin
based on the MSA can be scaled on top of the PYA result b
d-dependent prefactor,GPYA5y(d)GMSA with y(d)'0.112.34d.
Crossing points and end points based on the MSA are shown
filled symbols. The inset shows the difference inw between cross-
ing points and end points for increasingd* 2d. Results for the PYA
and the MSA are shown by open and filled symbols, respectiv
The dashed curve displays the fitw* 2wL545(d* 2d)2.
01140
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@15# and the theoretical data calculated using the struc
factor evaluated in PYA is achieved by keeping the w
width fixed at d50.03 and scaling the axis of the invers
temperature byGMD52.85GPYA. This preserves the limiting
case of the HSS as done above for the comparison of P
and MSA, cf. Fig. 2. Trying to match reasonably at least
two curves with the highest ratio ofD0

s/Ds, the packing frac-
tion has to be takenwMD52.25 wPYA20.5747 in order to
keep a value for HSS ofwHSS

c 50.586. This is consistent with
the diffusivity data and experiments done in colloids@8,9#.
The prefactor of 2.25 seems somewhat large and it is alre
seen in Fig. 4 that this overestimates the differences inw
further from the singularities. But taking the diffusivity da
for granted, this large prefactor is required. A modification
the third coupling parameterd was not necessary in the fit

Figure 4 demonstrates a reasonable fit between theory
data starting from the HSS and extending up to the cross
point. For the gel transitions, there are not enough data av
able to make a definite statement. For this high value ofG it
is also difficult to obtain accurate values forDs with good
statistics from the simulation@15#. These points are only fit-
ted qualitatively in Fig. 4. An extrapolation of the diffusivit
data was used in Ref.@16# to determine the open triangle
that represent a different estimate for the liquid-glass tra

a

by

y.

FIG. 4. Results for the SWS ford50.03. Triangles (m) mark
the isodiffusivity curves from the simulation in Ref.@15# from left
to right for D0

s/Ds523102, 23103, 23104, 23105, respectively.
Open trianglesn indicate the extrapolation of the diffusivity dat
@16#. Crosses (3) show the isodiffusivity curve forD0

s/Ds52.4
3102 from the simulation of the monodisperse system@29#. Dotted
lines are guides to the eye for the data from MD simulation. Das
lines indicate the data for melting, freezing, and solid-solid bino
together with the solid-solid triple point (j) and critical point (d)
from Ref.@45#. Full lines are theoretical calculations using the PY
structure factor for liquid-glass transitions, the glass-glass transi
with end pointA3 (s) and the respective isodiffusivity curves fo
D0

s/Ds523102,23103,23104,23105 ~from left to right!. The ar-
row labeled HSS indicates the limit of the hard-sphere system f
Ref. @15#. The MCT results are based on the PYA and the con
parameterswPYA and GPYA are transformed bywMD52.25wPYA

20.5747 andGMD52.85GPYA to match the isodiffusivity curves
from the simulation.
1-4
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DYNAMICS IN COLLOIDAL LIQUIDS NEAR A . . . PHYSICAL REVIEW E 69, 011401 ~2004!
tion line. These points agree well with the transformed t
oretical curves but tend to deviate closer to the crossing
comparison of the fit in Fig. 4, which uses the PYA for t
theoretical curves, with Fig. 2 indicates that using MSA
the structure factor would also properly fit the data from
HSS limit up to the crossing but would be worse than P
for the gel line. The indication of theA3 singularity in Fig. 4
has to be understood as an extrapolation of the transfor
tion scheme outlined above. A slight reservation has to
made since the simulation data refer to a binary mixt
while the present theory deals with a monodisperse sys
However, comparing the data from the simulation of t
monodisperse case@29# indicated by crosses in Fig. 4 wit
the ones for the mixture, the isodiffusivity forD0

s/Ds52.4
3102 seems to fit nicely into the picture. Data for low
D0

s/Ds from Ref. @29# have the same trend inG but appar-
ently do not occur at control parameter values for the sa
diffusivity as extrapolated from the mixture. The MD studi
were performed using Newtonian dynamics where an ap
priate definition ofD0

s is impossible; the valuedAkBT/m is
taken instead ofD0

s as reference which introduces a reaso
able microscopic time scale@15,29#. This problem in the
definition of the analog ofD0

s introduces less deviations fo
larger ratios of the diffusivityD0

s/Ds since only the order of
magnitude is important for the definition of the isodiffusivi
curves. A deviation in logD0

s would stay the same for bot
large and small differences in logD0

s2logDs and the result
can be more accurate the larger the ratioD0

s/Ds is. Therefore,
putting emphasis on the data with high ratios ofD0

s/Ds is
justified.

The fit in Fig. 4 shows that, in general, MCT overes
mates the trend to freezing when coupling parameters
increased. This was already found for the HSS@8# and a
binary Lennard-Jones mixture@46#. Yet, for a Lennard-Jone
potential the mechanism of arrest is still dominated by rep
sion, so the control parameter is effectively only density a
in that system. For the SWS near the line crossing, neces
ily both mechanisms of arrest have to be of the same imp
tance and the approximation inherent to MCT has to prese
the relative importance of both mechanisms. In the case
the SWS, MCT has apparently the same tendency in the e
for the treatment of couplings inw andG. The mapping of
the theoretical results tohigher experimental values of both
packing fraction and attraction strength is also in agreem
with a recent experimental analysis of a colloid-polym
mixture with the theoretical results for the Asakura-Oosa
potential @47#. For the latter work, a qualitatively simila
mapping could be suggested to match experiments and
oretical predictions. By comparison with the data for t
phase transitions@45# in Fig. 4, we recognize that the cros
ing of lines and theA3 singularity are located in the meta
stable region with respect to the solid-solid binodal. TheA3
singularity differs by 4% inw and by a factor of 4.5 inG
from the solid-solid critical point.

IV. ASYMPTOTIC EXPANSIONS

For the description of the dynamics at the crossi
asymptotic expansions at the two different singularities s
01140
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be applied with the separation from the respective singula
as small parameter. The separations from anA2 or A3 singu-
larity shall be denoted bys and«, respectively. The expan
sions forA2 singularities which are valid for glass-, gel- an
glass-glass-transition points are taken from Refs.@5,6#, the
expansions for theA3 singularity are found in Refs.@12,32#.
Only those formulas which are needed below are compile
the following. For bothA2 andA3 singularities the expansion
for the density correlation function can be stated in the g
eral form

fq~ t !5 f q
c1 f̂ q1hq$G~ t !1@H~ t !1KqG~ t !2#%, ~6!

where the plateau correctionf̂ q and the terms in squar
brackets are of next-to-leading-order. Neglecting these te
leaves the leading order result,fq(t)5 f q

c1hqG(t), which
comprises the factorization theorem of MCT@2#, stating that
the deviation offq(t) from the plateauf q

c factorizes into
time-dependent functionG(t) and a critical amplitudehq .
This factorization is violated in next-to-leading order byf̂ q
and the termKqG(t)2 with the correction amplitudeKq .
While the general formulas forf q

c , hq andKq are the same

for the expansions at both singularities,G(t), H(t), and f̂ q
are specific for the particular expansion. At anA2 singularity
the leading-order result is given by theb-correlation func-
tion @2#,

G~ t !5Ausugl
6~ t/ts!, ts5t0 /usu1/2a, s:0, ~7!

where the lower signs refer to the weak coupling side of
transition. The overall time scalet0 is used as fit paramete
For s50, the above formula simplifies to a power law
does the correction,

G~ t !5~ t0 /t !a, H~ t !5k~a!~ t0 /t !2a, ~8!

with a functionk(x),

k~x!5@jG~123x!2zG~12x!3#/@G~12x!G~122x!

2lG~123x!#. ~9!

Here,G(x) denotes the Gamma function andl is the expo-
nent parameter,l5G(12a)2/G(122a). For anA2 singu-
larity, 0.5<l,1, while l51 specifies anA3 singularity.
Formulas for the parametersj andz are found in Ref.@5#.

For the MSD, the analog of Eq.~6! reads@6,32#

dr 2~ t !/65r s
c22 r̂ s

22hMSD$G~ t !1@H~ t !1KMSDG~ t !2#%,
~10!

where only the plateau correctionr̂ s
2 is again specific to the

expansion considered. Inserting Eq.~8! into Eq. ~10! yields
the following form for the description of the MSD at theA2
transition point@6#,

dr 2~ t !/65r s
c22hMSD~ t0 /t !a$11@KMSD1k~a!#~ t0 /t !a%.

~11!
1-5
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The increase of the MSD above the plateaur s
c2 is given by

the von Schweidler law,

dr 2~ t !/65r s
c21hMSD~ t/ts8 !b$12@KMSD1k~2b!#~ t/ts8 !b%,

~12!

with G(11b)2/G(112b)5l. The time scalets8 obeys an-
other power-law scaling, ts85t0 /(B1/busug),g51/(2a)
11/(2b), where the numberB is tabulated in Ref.@48#.

The leading-order result for anA3 singularity is given by

G~ t !52B ln~ t/t!, B5A@26«1 /p2#, ~13!

where the time scalet is used to match the asymptotic d
scription with the solution. The corrections in Eqs.~6! and
~10! are completed by specifying

H~ t !5(
i 51

4

Bi ln
i~ t/t!. ~14!

The definitions forf̂ q , r̂ s
2 at theA3 singularity and the pa-

rametersB, Bi , and«1 are found in Ref.@12#. The solution
for the MSD at anA3 singularity can be represented in a
alternative form as a power law@32#,

dr 2~ t !/65r s
c2~ t/t!x, ~15a!

with exponent

x5hMSDB/r s
c2. ~15b!

The next-to-leading-order result implies a correction to
exponent

x85hMSD~B2B1!/r s
c2 . ~16a!

and reads

dr 2~ t !/65~ t/t!x8$r s
c22 r̂ s

21b2r s
c2ln~ t/t!21a3ln~ t/t!3

1a4ln~ t/t!4%. ~16b!

Here b25(2r s
c2a22a1

2)/(2r s
c4), a15hMSD(B2B1), a25

2hMSD(B21KMSDB2), a352hMSDB3, and a45
2hMSDB4.

V. RESULTS FOR THE MEAN-SQUARED DISPLACEMENT

Three paths are marked in Fig. 2 for the discussion of
dynamics. The first path forG51.67 is relatively far from
the crossing point and is connected to a glass transition.
path forG55.50 is close to but below the crossing point a
close to theA3 singularity. The third path is connected to
gel transition beyond the crossing point. All paths end at
A2 singularity given by the respectiveG. The changes in the
MSD when approaching the different liquid-glass-transiti
points shall be analyzed using the asymptotic laws for theA2
singularity in the following. The asymptotic laws for th
critical relaxation atA2 singularities from Eq.~11! are com-
pared with the full MCT result in Fig. 5. ForG51.67 @Fig.
5~a!# the description is similar to that found for the HSS@6#.
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The exponent parameterlA50.750 is still close to the one
for the HSS,l50.735. But the time scalet0

A51.95 differs
considerably from the valuet050.425 for the HSS. This is
due to a slowing down of the dynamics for times whe
dr 2(t) is smaller thanr s

c2 caused by the attractive forces o
smaller length scale. The exponent for the critical relaxat
is a50.305. The point where the description by Eq.~11! and
the numerical solution deviate by 20% of the critical plate
value 6r s

c2 is marked by a square att'18'9t0.
Figure 5~b! shows the scenario for an approach to anA2

singularity on the path closer to theA3 singularity. The ex-
ponent parameter is increased tolB50.857 corresponding to
a decrease of the critical exponent toa50.243. The increas-
ing importance of the attraction is seen in a decrease of
critical localization length representing the plateaus for
MSD from 6r s

c250.0318 @labeled by1 in Fig. 5~a!# to
6 r s

c250.0245@marked byd in Fig. 5~b!#. However, the ma-
jor new phenomenon is the drastic increase of the time s
t0 to t0

B543103. The critical decay for theA2 singularity
sets in only for times aroundt'106 as indicated by the
square in Fig. 5~b!. There is an additional relaxation proce
outside the transient ruling the dynamics within the windo
0< log10(t)<4.5. The critical localization length of the
nearby gel transition yieldsdr 2'1023. Therefore, the
anomalous decay process is not the one related to the
transition. Rather, it is the decay around the plateau of
close-byA3 singularity which appears as a subdiffusive r

FIG. 5. MSD for the SWS at the crossing. Full curves are
results for states on the isodiffusivity lines forD0

s/Ds

5105,107,1010 marked in Fig. 2. The curves with labelc refer to
the transition points for the value ofG indicated. Respective value
for the plateaus 6r s

c2 are marked by the symbols1, d, and j

introduced in Fig. 2. In the lower two panels, the plateau for theA3

singularity is shown as horizontal line. Dotted curves show
leading solution to the critical law, (t0 /t)a, dashed curves the next
to-leading order for theA2 singularities, Eq.~11!. Open squares~h!
denote the time where the solution deviates by 20% from
asymptotic result in Eq.~11!. An effective power law for exponen
x̃50.27 appearing atG56.63 is shown by the dash-dotted line~see
text!. Here and in the following figures the unit of length is the ha
core diameterd51.
1-6
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gime with almost power-law-like variation. This later ph
nomenon shall be explained in detail below.

In Fig. 5~c! for G56.33, the gel plateau is approach
with t05631023 and the critical relaxation forlC50.873
anda50.232 is described with similar accuracy as discus
in Fig. 5~a!. The deviation of 20% is att50.04858t0 and
again indicated by a square. The comparably large valuel
causes the leading asymptotic approximation~dotted curve!
to deviate further from the next-to-leading order result. T
amplitude@KMSD1k(a)# in Eq. ~11! is around21 in Figs.
5~a! and 5~c!. In this sense, one concludes that the criti
dynamics for the gel transition is quite similar to the o
observed for the glass transition.

The dynamics for thedr 2(t) exceeding the respective pla
teaus is quite different for the glass transition shown in F
5~a! from the gel transition in Fig. 5~b!. Let us, as usual, refe
to the process withdr 2(t).6r s

c2 as ana process. Thea
process shown in Fig. 5~a! is similar to the one in the HSS
The crossing of the plateau is followed by a von Schweid
relaxation and a crossover to long-time diffusion@6#. A res-
caling of the time can condense the curves on top of e
other, a property known asa scaling. For the dynamics at th
gel transition shown in Fig. 5~c!, the lower plateau (j) de-
fines the onset of thea process. The shape of th
logdr2-versus-logt curve differs qualitatively from the one
shown in Fig. 5~a!. The relaxation around theA3 singularity
plateau causes effective power-law behavior withx̃50.27 as
shown by the dash-dotted line. It is the same phenomeno
observed above in Fig. 5~b!. On approaching the gel trans
tion, this subdiffusive regime scales as part of thea process.
This holds if the distances to neither the nearby glass tra
tion nor theA3 singularity are seriously altered as we furth
approach the gel transition. Under this condition, theA3 sin-
gularity and the glass-transition singularity influence only
shape of thea-relaxation curves. On the other hand, if th
distance between the glass transition and theA3 singularity is
changed on the path taken, the form of thea process is also
modified. In this case, theA3 singularity is manifested in a
violation of thea scaling for the gel transition as found in
recent simulation study@14#. If the separation from theA3
singularity and the glass-transition singularity is sufficien
large, which is true for smallw, the dynamics is affected
only by the gel plateau and directly crosses over from
von Schweidler relaxation at the gel plateau to the long-ti
diffusion. For this reason, the exponentx̃ of the effective
power law approaches unity upon increasingG.

Figure 6 shows the parameters for the asymptotic desc
tion via Eq. ~11! as a function ofG along the liquid-glass-
transition lines ford50.03. The localization lengthsr s

c in
Fig. 6~a! exhibit a jump at the crossing pointGL reflecting
the discontinuous change off q

c . The values for the glass
glass transition are also shown down to theA3 singularity at
G°. The critical amplitudeshMSD follow the same trend as
r s

c , signaling that a change in the localization length also s
the amplitude for the relaxation aroundr s

c . Figure 6~b!
shows the two quantities in the correction to the critical la
KMSD shows only small deviations from the value in th
HSS, KMSD

HSS521.23. On the glass line at the crossin
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KMSD521.57, and on the gel line it reachesKMSD5
21.31. At the A3 singularity, KMSD521.64. Since away
from crossing and higher-order singularities,k(a) is always
close to zero, the correction to the critical law in Eq.~11! is
dominated by the amplitudeKMSD which is negative and of
order unity there. For this reason, including the correction
the critical law in Fig. 5 increases the range of applicabil
considerably in comparison to the leading approximation.
higher-order singularities,l→1, andk(a) diverges. This is
responsible for the increase of the corrections at the cross
These corrections change sign whenk(a) starts to increase
For the case ofd50.03, this happens only on the glas
glass-transition line betweenG° andGL.

Figure 6~c! points out the difference in the time scalet0
when coming from smallG in the HSS limit or from highG,
respectively. In the first case,t0 for the critical law at the
glass-transition plateau is increasing and eventually dive
ing when the gel transition at the crossing is approach
This is because the glassy dynamics of the gel transi
determinest0. For G.G°, t0 is orders of magnitude smalle
than in the HSS since the relevant localization for the ge
encountered much earlier in time. On this line of transitio
t0 is regular at the crossing but diverges at theA3 singularity.
This indicates that power laws are an inadequate descrip
of the critical relaxation at a higher-order singularity.

Figure 7 displays the parameters quantifying the von S
weidler approximation in Eq.~12!. Figure 7~a! refers to
states on the isodiffusivity lineD0

s/Ds51010 in Fig. 2. The
isodiffusivity lines bend away from the crossing and th
translates into the separation parametersusu being maximal
there. On the same curve, the separation from theA3 singu-

FIG. 6. Parameters for the critical decay atA2 singularities ac-
cording to Eq.~11!; r s

c (.) and hMSD (n) in panel ~a!; k(a)
(3) from Eq. ~9!, KMSD (,), andk(a)1KMSD (l) in panel~b!;
andt0 (L) in panel~c!. The arrow labeledG° marks the value for
the A3 singularity,GL the crossing point. Full and dotted lines a
guides to the eye to join points on different parts of the gla
transition line for 0<G<GL and the gel-transition line forG°
<G, respectively.
1-7
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larity u«1u has a minimum around the crossing. This a
shows that distances in control-parameter space as appa
e.g., in Fig. 2 need not necessarily reflect the relevant s
ration parameters of the singularity for the asymptotic
scription. The difference in coordinates of the liquid-glas
transition point for G55.50 from the A3 is (Df,DG)
5(0.085, 0.01) while for the crossing point (Df,DG)
5(0.084,20.37). This would suggest that the former po
is closer to theA3 than the crossing point. The separati
parameters, however, are«1520.028 and20.015, respec-
tively, indicating that the influence of theA3 singularity on
the crossing is stronger. Figure 7~b! displays the correction
amplitudes in Eq.~12!. KMSD is the same as in Fig. 6 an
k(2b) shows similar behavior ask(a) in Fig. 6. However,
ask(2b) is larger thank(a) on the gel line it almost com
pensates the negative values ofKMSD andKMSD1k(2b) is
close to zero.

The timet2 for the onset of thea process, i.e., the time
where the critical plateau is crossed, is shown in Fig. 7~c!.
When the long-time diffusion is given by the ratioD0

s/Ds

51010, the plateau in the localization is encountered by
MSD for the HSS att2533106. This is the time when the
cage around a tagged particle disintegrates and the pa
starts to diffuse. The increasing attraction forG.0 intro-

FIG. 7. Parameters for the von Schweidler law description,
~12!, for d50.03. Panel~A! shows the separation parameterss for
points on the isodiffusivity line forD0

s/Ds51010 (h2h). The
separation of the same points from theA3 singularity,«1, is shown
by the full line. The separation«1 of points on the liquid-glass
transition for givenG is shown by filled symbols (l•••l), the
plus symbol marks«1 for the glass-glass transition forG55.63.
panel ~b! exhibits the amplitudes of the correction in Eq.~12!,
k(2b)1KMSD (b) and k(2b) (3), cf. Eq. ~9!. The values for
KMSD are the same as shown in Fig. 6. panel~c! shows the timet2

where the respective criticalA2 plateau is crossed by the MSD fo
D0

s/Ds51010.
01140
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duces short-ranged bonding among the particles before
particles experience the cage. Hence, for the same reaso
for the increase oft0, this bonding process shiftst2 to higher
values. When comparing the lower panels of Figs. 6 an
we observe that for 0<G<5, the time scalest0 and t2 run
almost parallel and define a window of six orders of mag
tude in time where the cage effect dominates the dynam
For large coupling,G>8, we observe a comparable windo
for the dynamics around the gel plateau, where bonding ru
the dynamics. Therefore, in both cases the stretching of
dynamics is the same as is corroborated by observing
l&0.8 in the mentioned regions@21#. In this sense, also the
a processes of glass- and gel-transition singularities
similar if one is unaffected by the other. For 5&G&7, or
l*0.8, the dynamics is governed by the interference of b
mechanisms and the emergence of theA3 singularity.

Figure 8 shows the asymptotic approximation of thea
process for states withG56.67 and increasingw, cf. Fig. 2.
Three plateaus organize the relaxation. First, the gel pla
is encountered. Shown here as dash-dotted curve labeledb is
the first-order description by the fullb-correlation function
from Eq. ~7!. It continues the description by the critical la
discussed in Fig. 5. The correction in Eq.~12! for that A2
singularity is close to zero as for almost all gel transitions
d50.03, cf. Fig. 7. This explains why the first-order descr
tion is so successful in the regime after crossing the plate

.

FIG. 8. Asymptotic description of the MSD near theA3 singu-
larity. The full lines are the MSD for states withG56.33 and in-
creasingw. Three curves reproduce the results from Fig. 5~c! and
the last one refers tow50.5231. The long horizontal lines show th
critical plateaus 6r s

c2 for the gel transition atG56.33, theA3 sin-
gularity and the glass transition at the crossing point forG55.88.
The short horizontal lines indicate the corrected plateau 6(r s

c2

2 r̂ s
2) for the asymptotic laws associated with the respective re

ation. Theb-relaxation asymptote around the gel plateau, Eq.~7! ,
is drawn as a chain curve labeledb for the solution atD0

s/Ds

51010 ~compare text!. The chain line labeled vS represents the v
Schweidler description for the state atw50.5231. ForD0

s/Ds

5105, 107, and 1010 dotted and dashed lines show the leading a
next-to-leading approximation near theA3 plateau in Eq.~10!, re-
spectively. The straight full line labeledx shows the approximation
by Eq.~15a!, x8 the corrected power law~16a!, and the dashed line
labeledb2 the approximation by Eq.~16b!. The straight dash-dotted
lines show the asymptotic long-time diffusionDst for the respective
curves.
1-8
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After the plateau, the curve for theb correlator cannot be
discerned from the full solution. It extends, accidentally, a
beyond the region of applicability which is limited by theA3

plateau. To demonstrate that upon closer approaching thA2

singularity for the gel transition, thea scaling picture from
Fig. 5~a! reemerges, we show an additional relaxation
w50.5231. This has a similar separation parameter,s5

21024, as the curveD0
s/Ds51010 in Fig. 5~a!. This last

curve in Fig. 8 clearly displays the two-step relaxation and
described well by the von Schweidler law~12!.

The second plateau is associated with the logarithmic
laxation laws. The curvature of the logdr2-versus-logt curve
is positive around the plateau and therefore the leading
proximation, Eq.~13!, which implies negative curvature, dis
agrees qualitatively. Including the corrections in Eq.~10!
with H(t) given by Eq.~14!, one gets the dashed lines. The
describe two decades in time for all curves shown when
quiring 5% accuracy. The asymptotic laws for theA3 singu-
larity describe approximately half of the relaxation betwe
the gel and the glass plateau. In particular, the onset of
effective power law discussed in Fig. 5 is captured by
asymptotic approximation. However, the range of applica
ity for the logarithmic laws is bound by the neighborin
plateaus for gel and glass transitions. For this reason,
approximations for theA3 singularity do not extend beyon
the range shown in the figure. In particular, the effect
power law with exponentx̃ is explained only in the first par
by the logarithmic laws and is continued by a crossover
the dynamics at the plateau of the glass transition.

To differentiate the effective power law from the pow
laws discussed for the MSD in Ref.@32#, we show the latter
for comparison as dotted line in Fig. 8. Let us note first t
for all states considered we findb2.0. The approximation
by the leading-order power law~15a! describes one and
half decades on the 5% level as seen for the curveD0

s/Ds

51010. The exponents capture the diminishing slope up
approaching theA3 singularity by decreasing from left to
right, x50.331, 0.243, 0.181, 0.163. The corrected pow
law, Eq. ~16a!, yields an exponentx850.178 for the last
relaxation. This correction comes closer to the effective
ponentx̃50.27, but improves the description of the effecti
power law only little, as can be seen in the straight full li
with label x8. When including the curvatureb250.0132 in
the approximation, cf. Eq.~16b!, we find the dashed curv
b2, which describes the relaxation over three decades in t
around theA3 plateau. But again it covers only the onset
the effective power law. In that sense the effective power
is the analog of the effective logarithmic decay discussed
connection with Fig. 9 of Ref.@12#, where a crossover from
A3 to A2 dynamics could explain the observed decay.

For D0
s/Ds>107 we observe that the curves in Fig. 8 ca

be condensed onto a master curve after the gel plateau.
holds for the solutions as well as for the asymptotic appro
mations since the distance to theA3 singularity is no longer
changed significantly. The decay around theA3 plateau is
part of thea process for the gel transition. Thisa process
contains also the relaxation around the third plateau in Fi
that represents the glass transition at the crossing p
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Since the distance to this point is relatively large, t
asymptotic laws are modified by rather large corrections
indicated by the plateau correction for the curve labe
D0

s/Ds51010. Despite the larger distance of the connect
glass-transition singularity, the last relaxation still slow
down the dynamics by one decade before the final cross
to the long-time diffusion.

To demonstrate how the crossing scenario in Fig.
changes whend is varied, Fig. 9 exhibits the paramete
relevant for the description of the relaxation. The three p
teaus in Fig. 8 are defined by the localization lengthsr s

c .
Figure 9~a! shows the variation of the localization lengths. A
the A4 singularity,d5d* , all three plateaus join in a singl
localization length. Ford,d* , the localization of a glass
state at the crossing is larger than the localization of the
state. This difference is becoming more pronounced ad
decreases. For the gel the localization followsd and for the
glass the localization approaches the value for the HSS
between there is the plateau for theA3 singularity, which
closely follows the localization for the gel. This limits th
regime for the von Schweidler relaxation after the gel p
teau, as observed in connection with Fig. 8, if theA3 singu-
larity is close. Sufficiently far from higher-order singular
ties, the amplitude indr 2 delimited by the localization
lengths of gel and glass transition exhibits the dynamics
fined by a crossover of two differentA2 singularities. If the

FIG. 9. Variation with the well width. Panel~a! shows the lo-
calization lengthr s

c at the crossing point for the glass (3) and the
gel state (L) as a function ofd* 2d together with the value at the
A3 singularity (l), d* 50.043 81. The value ofr s

c in the HSS is
indicated by the arrow. Panel~b! displays the separation paramet
2«1 (L) and the quadratic corrections to the logarithmic rela
ation at the crossing point. Ford5d* ,0.03,0.02, the minimalu«1u is
displayed (j) which can be reached on the isodiffusivity lin
D0

s/Ds51010. Panel ~c! displays the exponentsx (l), cf. Eq.
~15b!, and the fitx53.05 (d* 2d) as dotted line.
1-9



i

m
e

,
c-
io

at
in

s
h
r,

s
u
tio
io
-

.

o

ifie
en
ec
.

e
or
re

c
te
b
as

1

ce

der

e 2
ple-
cay

be-

er

nce
d

ed
cay

l

to

irst,

in

on
t

u-
d

are

t-to-
sh-
the

M. SPERL PHYSICAL REVIEW E 69, 011401 ~2004!
A3 singularity is close by, as discussed in Fig. 8, logarithm
laws influence the relaxation.

The influence of theA3 singularity is quantified by the
separation parameter at the crossing,«1

cross, shown for the
various crossing points in Fig. 9~b!. For smallerd, the sepa-
ration increases and limits theA3 dynamics visible in the
relaxation at the crossing. The quadratic correction as do
nant deviation from the logarithmic decay laws is govern
by the variation of«1

crosswhile the variation inKMSD is only
small as noted earlier@32#. If in an experiment one is limited
to a dynamical window given by a diffusivity of, say
D0

s/Ds51010, this implies further restrictions to the dete
tion of the higher-order singularities. The minimal separat
on the isodiffusivity curveD0

s/Ds51010 is shown as«q
iso in

Fig. 9~b!. The exponentx, cf. Eq. ~15b!, assumed at the
crossing point can be used as an estimate for the separ
from theA3 singularity. Since the distance between cross
point and end point varies quadratically ind* 2d, cf. inset
of Fig. 3, the exponentx at the crossing is linear ind* 2d,
cf. Eq. ~13!. This is shown in Fig. 9~c! where the exponent
can be fitted by a linear function. When restricted to t
isodiffusivity curveD0

s/Ds51010, the exponents are large
accordingly. Ford50.02 we findx50.169 and ford50.03
the minimal exponent isx50.095.

VI. RESULT FOR THE CORRELATION FUNCTION

The preceding section showed that the dynamical law
a crossing of liquid-glass transition lines can be quite intrig
ing since upon variation of control parameters the separa
to three different singularities is changed. For the discuss
of the density correlatorsfq(t), there enters the wave num
ber as a further parameter. Allowing also for a variation inq
combines the subtleq variation for the logarithmic decay, cf
Ref. @32#, with the q dependence of the decay atA2 singu-
larities. We shall select only a special case which was c
sidered in Ref.@21# and found in an experiment@13,17# and
also in MD simulation@15#.

Figure 10 shows how the dynamics for the states spec
in the inset is described by the asymptotic laws for differ
singularities. The interesting feature is the straight line pi
describing the decay for 0.8*fq(t)*0.6 for states 1 and 2
This reflects the logarithmic decay caused by theA3 singu-
larity. The appropriate plateau value connected with theA3

singularity is f q
+ 50.899, and close to the plateau for the g

transition f gel
c . That the plateaus for gel transitions and f

the A3 singularity are close for any wave vector is also
flected in the localization lengths in Fig. 9~a!. Therefore the
logarithmic laws for theA3 singularity have an asymmetri
range of applicability. The range is rather small for shor
times since the gel transition interferes, and considera
larger for longer times as the critical decay due to the gl
transition has a more distant plateau.

The evolution of the dynamics when moving from state
to state 2 is the analog of the dynamics seen in the MSD
Fig. 5~b!. Only a minor part of the slowing down takes pla
at the gel plateau, the major part fromt'8 to t'104 is
described by the logarithmic laws aroundf q

+ . For the solu-
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tions 1 and 2, the approximation by the next-to-leading or
is valid from t'10 to t'103 and 104, respectively. At theA2
singularity for the glass transition, the critical law~8! is ob-
served. The exponent parameterl50.847 implies an expo-
nenta50.250. The leadingt2a law ~dotted! describes curve
2 successfully fort*106 and adding the correction~dash-
dotted! improves that range by almost two decades. Curv
demonstrates how different asymptotic expansions com
ment one another: The logarithmic laws describe the de
from abovef q

+ down tofq(t)*0.7 and Eq.~8! approximates
successfully the region fromfq(t)&0.7 to the critical pla-
teau f glass

c . That the slope of the decay becomes smaller

low f q
+ is a clear indication of a closer approach to a high

order singularity, as prefactorB in Eq. ~13! vanishes with the
square root of the distance from theA3 singularity.

When taking another path from 1 to state 3, the dista
to the A3 singularity remains largely unaltered and we fin
the counterpart of Fig. 8 for the MSD. The dynamics is rul
by an approach to the gel transition and the complete de
below f gel

c is part of thea process. Thisa process for the ge
transition scales by a shift along the respective plateauf gel

c

with only minor deviations due to changing separations
the glass-transition line and theA3 singularity. No clear two-
step process is observed for curve 3 for two reasons. F
theA2 dynamics belowf gel

c is limited by the logarithmic laws
for the A3 singularity. Second, the complete decay seen
curve 3 requires more than ten decades, but only fort&102

the decay takes place above the plateauf gel
c . Hence, the de-

FIG. 10. Logarithmic decay of the density correlation functi
for q54.2 near the crossing point ford50.03. The inset shows par
of the glass-transition diagram ford50.03 including the line«1

50 ~dashed!. The full curves in the main panel display the sol
tions for statesn51,2,3: (G,w)5(0.53,5.33), (5.33,0.5361), an
(0.53,6) which are marked in the inset. Three relevant plateaus
indicated by horizontal lines for the gel transition~dashed! at
(0.530,6.1) labeledf gel

c , for theA3 singularity~full line! labeledf °,
and for the glass transition at (0.536,5.33)~short full line! labeled
f glass

c . The plateau values aref gel
c 50.954, f °50.899, andf glass

c

50.503. Short lines show the correctedA3 plateau valuesf °1d f̂
for the three states specified. Broken curves show the nex
leading approximation for the logarithmic decay, dotted and da
dotted curves the leading and next-to-leading approximation for
critical decay~8! in curve 2 atf glass

c .
1-10
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cay onto the plateau is too close to the transient dynamic
exhibit a clear critical decay. Moreover, the exponent para
eter in the vicinity of theA3 singularity is already rathe
high, l50.89, so the critical lawt2a is stretched consider
ably. As in the MSD shown in Fig. 8 for the last curv
moving closer to the gel transition, the two-step process ty
cal for anA2 singularity reemerges.

VII. CONCLUSIONS

The relaxation scenarios for line crossings near high
order glass-transition singularities were presented in
work. Three different singularities influence the dynamics
that region of the glass-transition diagram, and asympt
expansions around each of these are necessary to suc
fully describe the complete relaxation patterns. Each sin
larity is associated with a characteristic plateau value
shown for the localization lengths for the MSD in Fig. 9~a!
and for the Debye-Waller factorsf q

c for fq(t) in Fig. 10. The
position of the different plateau values arranges the suc
sive steps for the relaxation in time.

The plateau of the gel transition is encountered first. I
approached by the relaxation with the critical law of theA2
singularity, cf. Fig. 5~c!. The dynamics after crossing the g
plateau is described by the von Schweidler law related to
A2 singularity for the gel transition, cf. Fig. 8, before th
logarithmic laws at theA3 singularity become valid. The
latter have been studied extensively and imply a subdiffus
power law with exponentx, cf. Eq. ~15b! for the MSD at
specific points in control-parameter space whereb2 in Eq.
~16b! vanishes@32#. However, for a region near the crossin
whereb2.0, an effective power law with exponentx̃ can be
identified in Fig. 5~c!. The onset of this behavior is describe
by the asymptotic dynamics around theA3 singularity while
the extension to later times originates from a crossover to
critical dynamics at the plateau of the glass transition,
Fig. 8. Both the asymptotic power law@16# and the crossove
scenario@15# have been found for the MSD in recent com
puter simulation studies.

A similar crossover which yields thet x̃ relaxation in the
MSD is responsible for an effective logarithmic decay in t
correlation functions for wave vectors that are accessibl
typical light-scattering experiments. Again, the dynamics
tween the plateau for theA3 singularity and the plateau fo
the glass transition assumes a variation linear in lnt, cf. Fig.
10. Most of this behavior is fitted satisfactorily by two di
ferent asymptotic laws and is therefore clearly differentia
from the asymptotic logarithmic decay at higher-order sin
larities which is expected only for large values of the wa
vector @32#. Nevertheless, also the effective logarithmic d
cay can serve as a clear signature of a line crossing
hence for the existence of higher-order singularities. The
cay analyzed in Fig. 10 has been identified as a typical s
nario in systems with short-ranged attraction in experim
@13#, theory@21#, and computer simulation@15#.

The last relaxation step of the complete decay in the
cinity of the line crossing occurs at the plateau for the gl
transition and is similar to the scenario known from the H
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as seen in Fig. 5~a!. Only after having crossed this last pla
teau, the dynamics enters the long-time diffusion limit. Ea
of the relaxation steps discussed above can be more or
pronounced depending on the separation from the rela
singularity in control-parameter space. It can be inferr
from Figs. 6, 7, and 9 that in a certain region around
higher-order singularities, the presence of the latter singul
ties introduces large corrections to the asymptotic laws
gel- and glass-transition points. Outside this region, howe
the use of the conventionalA2 scenario is justified and the
asymptotic approximation varies only little there. Hence,
dynamics near any state on the entire surface of liquid-g
and liquid-gel transitions can be characterized by the par
eters of the asymptotic approximations.

The variation of the final long-time diffusion can be us
to map the theoretical glass-transition diagram to the exp
mental control-parameter space and thus locate higher-o
glass-transition singularities at least approximately. T
mapping proposed in this work could be used to estimate
location of anA3 singularity in Ref.@15# by extrapolation, cf.
Fig. 4, and facilitated the identification of anA4 singularity
in a recent computer simulation study@16#. Within the
Percus-Yevick approximation forSq , theA3 singularities are
behaving similar to the critical points of the fcc-fcc binod
@45#. Upon changing the well widthd, MCT end points and
critical points vary only little in the attraction strengthG as
seen in Fig. 3. When using the structure factor in me
spherical approximation, this behavior is different. But th
difference is eliminated after identifying the glass-transiti
diagrams for both closure relations at the crossing points.
d50.03, the densities of end point and critical point are
accord reasonably, while the higher value forG fixes theA3

singularity in the metastable region with respect to the is
tructural phase transition.

Note added in proof. For an additional colloidal system
the measured correlation functions could be interpreted
crossing scenario close to an end point singularity in a v
recent work@50#.
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APPENDIX: CONSISTENCY OF THE NUMERICAL
SOLUTION

Glass-glass-transition points and higher-order singul
ties were calculated for Figs. 1–3, and 9. The expeditio
and accurate identification of these singularities is also c
cial for the evaluation of the asymptotic approximation
Therefore, some notes concerning the numerical solution
Eq. ~2! shall be discussed in this appendix. For the deter
nation of liquid-glass-transition points a robust method
nested intervals can be applied anticipating the jump fr
1-11
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zero to a finite value in the glass-form factorsf q at the re-
spectiveA2 singularity. This procedure works also at anA4
singularity which is also a liquid-glass-transition point. Fo
glass-glass-transition point the discontinuity in the gla
form factors takes place between finite values and the ju
in the f q becomes smaller when approaching theA3 singu-
larity and observing a discontinuity in the glass-form facto
becomes increasingly difficult. Therefore a different criteri
shall be used. To this end, coefficients from the expansio
the right-hand side of Eq.~2! are required, cf.@12#,

Aqk1•••kn

(n)c 5
1

n!
~12 f q

c!$]nFq@Vc, f k
c#/] f k1

c
•••] f kn

c %

3~12 f k1

c !•••~12 f kn

c !. ~A1!

At a glass-transition singularity, Eq.~2! is no longer invert-
ible which is signaled by the maximum eigenvalueE of the
so-called stability matrixAqk

(1)c approaching unity from be
low @3#. The evolution ofE in the vicinity of anA2 singu-
larity is given by a square root in some control parameterv,
12E}Av2vc, for the strong-coupling sidev.vc. Monitor-
ing the eigenvalues can be done with high precision
allows for an extrapolation in control parameters which c
reduce the numerical effort considerably. At anA3 singular-
ity, the eigenvalue is approaching unity from either side
generic paths in control-parameter space through the si
larity. The variation is given by 12E}(v2v°)2/3 which fol-
lows from generic properties of the singularity@49#.

It is clearly seen in Fig. 11 that at a glass-glass transit
only the eigenvalues for the strong coupling side,w.wc, go
to unity and follow the square-root law. At a liquid-glas
transition the eigenvalues forw,wc would be zero, how-
ever, in the glass due to continuity they are finite, sma

FIG. 11. EigenvaluesE upon approaching a glass-glass tran
tion for d50.02, G57.75, andwc50.540 965 015. The deviation
from unity, 12E, is shown forw,wc ~open circles! and for w
.wc ~filled circles! together with the square rootAuw2wcu
~dashed!. The corresponding eigenvalues for theA3 singularity at
d50.02, G°56.646, andw°50.568 032 1 are denoted by ope
squares forw,w° and by the filled squares forw.w°. The full
line shows the power lawuw2w°u2/3.
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than unity and jump to a critical value only at the glass-gla
transition points. For theA3 singularity this discontinuity
vanishes and the eigenvalues show the variation with
power 2/3 on both sides ofw°. The deviation from that law
for larger distances withw,w° is due to the increase of th
eigenvalues at the liquid-glass transition atw50.540 693.
Deviations close to theA3 singularity on the other hand in
dicate the precision of five digits in the control parameterw
for the determination ofV°. The deviation ofEc from unity
is a measure for the accuracy of the critical points. In t
work a value of 12Ec<1023 was assured for all the trans
tion points shown in this work.

Despite being useful as an extrapolation scheme, the
neric laws close to the singularities can also serve as con
tency check for the numerical results. This was alrea
shown in the inset of Fig. 3 for the distance of the cross
point from theA3 singularity. There, the control paramete
close to theA4 singularity were related in a quadratic poly
nomial. As another quantity we utilize the exponent para
eter l which approaches unity at higher-order singularitie
m2512l is also given by coefficients from Eq.~A1!, m2

512aq* Aqk1k2

(2)c ak1
ak2

, where summation over repeated ind

ces is assumed andaq* andaq denote the left and right eigen
vectors of the stability matrixAqk

(1)c , respectively.
Figure 12 shows that close to higher-order glass-transi

singularities the exponent parametersl512m2 calculated
numerically obey the asymptotic approximation by the
spective power laws with reasonable accuracy. For theA3
singularity the description works down tol50.85 and in-
cludes both glass-glass transitions and liquid-gel transitio
The A4 singularity is described by the asymptotic law f
l>0.93 on the line of gel transitions and forl>0.9 on the
line of glass transitions. The exponent parameters for dif
ent potentials fall on top of each other close to theirA4
singularities@24#. That the asymptotic approximation is ap
plicable for a similar range in control parameters underlin
the universality of theA4 singularity.

-
FIG. 12. Parameterm2512l in the SWS ford5d* and 0.03.

Values for liquid-glass transitions are shown as full lines, for gla
glass transitions as filled circles. The dashed lines show the l
m2}(G2G* )2/3 for the A4 singularity andm2}(G2G°)2/3 for the
A3 singularity. The squares indicate a deviation between result
approximation of 5%.
1-12
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